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Abstract—In this paper, we introduce an AI player model
for the Doodle Jump game and then implement adversarial
attacks to thereafter sabotage the modelling. The AI player
model which we call our game agent, interacts with the game
and allows the ’Doodler’ to climb up the platforms without
any human intervention and also attempts to beat human high
scores. The agent is trained using different reinforcement learning
algorithms. We have also outlined details on past work in this
field, the different reinforcement learning algorithms used and
details on the game environment that we have used in order to
train and build our AI agent. Furthermore, we plan to use the
trained game agent to perform various types of evasion based
adversarial attacks that would deceive the agent and confuse it
to give a false output.

Index Terms—Reinforcement Learning, Adversarial Attacks,
Deep Learning, Pygame

I. INTRODUCTION

A. Reinforcement Learning

Deep Reinforcement Learning is an area of Machine Learn-
ing(ML) that has been widely used to build game agents and
bots to challenge and beat human players. It has been widely
used in the recent years ever since it’s introduction in 2013
[1] which showed how reinforcement learning (Q-learning)
can be combined with a Convolution Neural Network(CNN)
to learn to play Atari games from game image inputs. Most
popular and common ML algorithms are trained with a set
of inputs called features/attributes and a target variable. The
system then tries to learn from this information and attempts
to make predictions of the target based on new inputs. In
our case we do not know what the best outcome/action is
at every step of the game and hence this approach, which is
also called supervised learning will not be effective. On the
other hand, reinforcement learning is an approach of training
machine learning models to make a sequence of decisions.
Reinforcement learning starts by building an agent that learns
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from an environment by interacting with the environment
through trail and error. The system also learns by receiving
rewards which serves as feedback for performing an action.

Our goal in this project is to build an agent that learns
to play the Doodle Jump game using Deep Reinforce-
ment learning algorithms. We have explored the different
Deep Reinforcement learning algorithms like the Deep Q-
learning(DQN) and Deep Recurrent Q-learning(DRQN) al-
gorithms and trained our agent on both these models. We
have also experimented with different reward functions and
hyperparameters to choose a model that gives us a good
performance. Our project also focused on an analysis on the
exploration and exploitation trade-offs for these methods and
we expermiented with 3 exploration functions. We also have
performed an analysis on different reward functions and de-
scribed the results for each of them. We also worked on some
game modifications to help the models learn faster. Another
part of our project looks into policy gradient methods of
Reinforcement learning like the Advantage Actor Critic(A2C)
and Proximal Policy Optimization(PPO) algorithms.

B. Adversarial Attacks

Once we have a good agent that is able to play the Doodle
Jump game satisfactorily, we further wish to explore the topic
of Adversarial Attacks. Adversarial attacking is a technique in
machine learning that attempts to fool models by supplying
deceptive/misleading input that looks similar to the human
eye. This part of our work will mainly look into possibilities
of eliminating players using game bots to deceive Anti-cheat
engines. We will be researching on using various evasion based
attacking models that would manipulate the input image, sent
to reinforcement learning system to confuse the game bot.

C. Doodle Jump

Doodle Jump is a very popular video game created by Igor
and Marko Pušenjak and published by American studio Lima



Sky. The game is available on all major platforms. When it
was released, Doodle Jump skyrocketed to fame, accounting
for over 25,000 copies of the game being sold every day for
4 months. The game is so popular that it has been developed
into a video redemption game at video arcades.

The main aim of the game is to propel ’The Doodler’, the
main character of the game which is a four-legged creature,
up a never-ending series of platforms, without falling from
them. The left end of the playing field connects to the right
end to help the doodler stay within the bounds of the screen.
The doodler can get a boost in score and height from springs
attached to some platforms. There are monsters on some
platforms that the doodler must avoid otherwise it will get
killed on contact with the monster. The game ends when the
doodler falls from a platform or when it hits a monster.

II. RELATED WORKS

The relation between machine learning and playing games
goes back to very early days of Artificial Intelligence [2] [3]
where several machine learning techniques and game playing
techniques were described over a game of checkers. Applying
machine learning to game applications include player model-
ing, learning about the game, understanding players and their
behaviours, etc.

Player modeling became popular with the chess system by
Deep Blue, that was developed at IBM Research during the
mid-1990s. [4]. With the development of newer games and
as the complexity of games increased, using Reinforcement
learning to learn about the game environments to build player
models gave a new avenue for research.

The most successful game agent to use reinforcement learn-
ing is TD-gammon, which is an agent that plays backgammon
[5]. The first experiments on Deep Reinforcement learning was
performed by Google Deepmind on a set of seven Atari 2600
games from the Arcade Learning Environment. [1]. The model
called the Deep Q-learning(DQN) model was a convolution
neural network, that was trained with a variant of Q-learning.
The model outperformed all previous approaches on six of the
Atari games and was also able to beat human experts for three
of the games.

[6] by Deepmind also describes a new approach to the
Go game by using deep neural networks that are trained
by supervised learning from human games with tree search,
and by reinforcement learning, from self-play games. [7] also
talks about how riddles can be solved with the help of deep
distributed recurrent q-networks.

[8] talks about extending the capabilities of DQNs to im-
prove performances in complex games. These Recurrent Deep
Q-Networks use a Long Short Term Memory (LSTM) and
deep Q-network thereby enabling the possibility of learning
from observations that might have occurred much earlier in
the learning phase.

[9] explores DRQN on a set of games like Q*bert, Seaquest.
This paper also examines attention with DRQN and also
evaluate its usefulness.

The Atari games were implemented on the Arcade Learning
Environment(ALE) [10]. ALE is an object-oriented framework
that aids development of AI agents for Atari 2600 games.

With reinforcement learning being on top for developing
game agents, another toolkit called the Open AI gym gained
a lot of importance. OpenAI Gym is a toolkit that aids
developing and evaluating reinforcement learning algorithms.

Gym Retro is another platform for reinforcement learning
research on games.

Game development and simulation has never been easier
than it is currently. Pygame is a library based on Python that
we have used in our game development for Doodle Jump. We
have outlined more details on the game and the simulation
environment in the next section of this paper.

We have used the DQN and DRQN models in our game.
Most of the research on Deep Q-learning focuses on fully
observable environments. The DRQN aims to provide a
workarounds to overcome partial observability. However, we
need a mechanism for keeping track of the history of obser-
vations while estimating the Q function with a neural network
and this is achieved by introducing recurrence in the Q-
network.

Deep Q-learning is a value-based RL algorithm. We es-
timate the Q values and the action corresponding to the
highest Q value(maximum expected future reward) at each
state is performed. In policy-based methods, we learn a policy
function which is a mapping of the state to action instead of
a value function that gives the expected sum of rewards for
each action at a particular state. Both value-based and policy-
based methods have their own drawbacks. We have explored
a hybrid method that combines value-based and policy-based
algorithms called the Actor-Critic. The ’Critic’ provides an
estimation of the value function which could be the action-
value/Q value or state-value/V value. The ’Actor’ updates the
policy distribution as directed by the Critic. Both the Actor
and the Critic use Neural Networks to learn. This method is
extremely useful in environments with a large action space.
The Actor Critic methods have proven to perform well and
yield state of the art results. [19] talks about Asynchronous
Methods of Reinforcement learning using actor-critic model.
Advantage Actor Critic and Proximal Policy Optimization are
two of the algorithms that show promising results. [20] speaks
about the PPO algorithm and the introduction to the clipped
surrogate objective function to learning the cost function faster
without much deviations from the previous values.

Even though deep neural networks show human level ac-
curacy in areas of vision, speech and language, they are
vulnerable to small perturbations in inputs. These perturbation
based attacks are called adversarial attacks. Initial work on ad-
versarial attacks was done on by [11]. The authors introduced
new way of deceiving deep networks with the Fast Gradient
Sign Method(FGSM). This was the first attempt to expose the
linearity of neural networks with adversarial perturbations in
input images. In [12] authors propose a more robust attack
which is universal and based on ”first order adversary”, called
Projected Gradient Descent(PGD). The PGD attack is further



enhanced by adding different restarts and more number of
iterations to perform perturbations. Despite PGD being one of
the best methods for creating adversarial attacks, the different
parameters needed for the attack like step size, epsilon value,
number of restarts and number of iterations made it difficult to
compare different defense techniques. This led to proposal of
Autoattack by [13]. Autoattack is an ensemble of 4 attacks; 2
white-box attacks which are step-free variations of PGD and
differ in terms of loss functions, the other 2 black-box attacks
targeted FAB [14] and Square Attack [15]. For some time
now this attack has been considered the academia standard.
Later, claiming similar robustness in adversarial training as
PGD, [16] claimed improvement on FGSM with random
initialization. This method was time and compute efficient as
compared to previous techniques. We use this improvement on
FGSM to implement our attacks on off-policy based methods.

Deep Reinforcement Learning techniques inherited the flaws
of deep learning models and became equally susceptible to
adversarial attacks. [17] studied the affects of adversarial
attack in policy based methods. The authors also showed how
RL methods see a significant drop in accuracy with both white
box and black box attacks. A recent work [18] focuses on
effects of attacks on multi-agent RL systems. In our work
we focus on single agent policy based methods to perform
adversarial attacks.

We will now take a look at the details of our game
implementation and discuss the approaches we have used.

III. DATA AND ENVIRONMENTS

A. Simulation Environment

Pygame is a module developed for creating video games
natively in Python. With extra functionality added over the
SDL library, pygame is one of the most popular game devel-
opment environments for Python, allowing us to build feature-
rich games. Some of the advantages of pygame is that it is free,
simple to use, highly portable, modular and easy to maintain.

For our project, using pygame was very beneficial since it
is very light on the CPU, hence enabling quicker training and
cutting down development costs. The game we have used is a
modification of the Doodle Jump game developed by Frankie
1. The game runs on a 800x800 window, where there are
multiple platforms upon which the doodler jumps to move up
the game. In our modification to the game, we have increased
the complexity of gameplay by adding regular platforms, mov-
ing platforms and broken platforms. We have also introduced
three levels to the game, “EASY”, “MEDIUM”, and “HARD”,
which can be initiated through constructor injection. The diffi-
culty of the game can be manipulated through two parameters:
the inter-platform distance - distance between two consecutive
platforms that are at a different height from each other, and
the second platform probability - the probability with which a
second platform is generated along with a single platform at
a particular height (Fig. 1). Through manual experimentation,

1https://github.com/f-prime/DoodleJump

Fig. 1. Explaining inter-platform distance and second platform probability.

the threshold values for both of these parameters for all the
three levels of the game were set.

B. Action Space

The doodler is treated as a single point during the simulation
and it has a discrete action behaviour. At every point in the
game, the doodler has three action choices - it can either do
nothing, or go left, or go right.

TABLE I
ACTION SPACES

No. Action Description
1 No Action Doodler does nothing, jumps in place.
2 Left Doodler turns left and goes left.
3 Right Doodler turns right and goes right.

In the learning process, the vector representing the action
choice of the doodler has 3 dimensions. For prediction, the
vector element of the selected action is 1, and all others are 0,
i.e., one-hot encoding is performed for the predicted vector.

C. Reinforcement Learning System

In our project, we have explored multiple Reinforcement
learning algorithms instead of a supervised ML approach.

Reinforcement learning algorithms can be broadly classified
into value based and policy based.

1) Value Based Approaches: In the first part of the project,
we have looked into value based approaches of reinforcement
learning and we have experimented with the Deep Q-learning
and Deep Recurrent Q-learning algorithms. Our RL system for
the value based approaches consists majorly of the environ-
ment and agent (Fig. 2). The agent is the Q-learning agent that
fetches the rewards and states from the environment and passes
it to the model. The model is a Deep Q-learning CNN model
that fetches the current state from the agent and generates
action that the agent has to perform. The environment which
is the Doodle Jump game powered by the pygame engine



interacts with the agent and rewards the agent either positively
or negatively based on an action that the agent performs. The
nature of the reward also depends on the quality of the action,
i.e., how good or bad the action is for a particular state. The
action is a boolean array comprising of 3 values Left Jump,
No Action, Right Jump for the doodler.

The reward is a combination of long term (expected reward)
& short term reward (current game score).

Fig. 2. DQN and DRQN RL System

2) Combined Value and Policy Based (Hybrid) Approaches:
In this part of our project, we have explored several policy
gradient approaches of reinforcement learning. In such meth-
ods, we try to optimize the policy without a value function.
But policy methods have their own disadvantages and hence
we have looked at hybrid approaches. We particularly look
at Actor-Critic methods, which are a combination of both
policy based and value based methods. We have experimented
with the Advantage Actor Critic(A2C) and Proximal Policy
Optimization(PPO) algorithms. The RL system for actor-critic
based methods is very similar to our previous RL system
except that the agent now will use 2 networks to interact with
the game(Fig. 3). Our actor takes the state, gives an action and
receives a new state and reward. Critic computes the q value
of taking that action at that state. The Actor then updates its
policy parameters based on the q value and chooses the next
action to take. The Critic then updates its value parameters.

The Advantage function in advantage actor critic model tries
to calculate the prediction error (Temporal-Difference Error).
The TD error is calculated as the difference between the TD
target and the value of the next state as calculated by the critic
model. This TD target is nothing but the predicted value of
all the future rewards generated from the current state. The
value of Advantage function helps in determining if the agent
should be encouraged to take more of such actions or not.

Fig. 3. Actor Critic RL System

The goal of the agent is to maximize the reward for each
state of the game by learning what action to perform. In
our scenario, the state is a screenshot of the current game
that is fetched from pygame engine’s display component. The
agent receives the states/observations at each iteration from
the environment.

In Reinforcement learning terms, the decision-making pro-
cess used by the agent can be termed as a policy. The policy
is a mapping from the state space into the action space (the
set of actions an agent can take, in our case NO ACTION,
LEFT or RIGHT as mentioned previously).

D. Pre-Processing Pipeline
For our Doodle Jump AI agent, we have a pre-processing

pipeline set in place before we train the agent on our models
(Fig. 4). We first have the game engine which is powered by
pygame. The display renderer from pygame is used to fetch a
screenshot of the game which gives us the current state of the
game as an image. This is an image of size 800x800.

The next component is the Game-Agent communication
wherein the Game provides the state to the agent. The agent
learns which action to perform based on the state and com-
municates the action back to the game. We have also used
OpenCV in order to preprocess the current state image/input
image prior to sending it to our model for learning. The
800x800 image is resized to an 80x80 image. This is further
converted to a single channel image in grayscale and given
as input to the model. This pre-processing is done in order to
reduce the network parameters of our model and also reduce
the training time per iteration.

Fig. 4. Pre-processing pipeline

E. Reward Functions
Reward Functions are important to any Reinforcement

Learning system because they determine how quickly agent
can learn the objective. They also make sure the agent
learns the given task at hand without circumventing the given
constraints in game engine/environment. For the purpose of
training our game agent we use 6 different types of reward
functions. Each of these are explained in detail in the experi-
ments section.

F. Agent Modelling
The schema for training our agent is described below.

An important consideration in any RL task is the Explo-
ration/Exploitation trade-off. Exploration is the task of al-
lowing the agent to try out random actions from the action



space to understand the environment thoroughly. On the other
hand, exploitation is the task of using/exploiting the known
information to maximize the reward. In order to be able to
achieve a good cumulative reward, we need to balance how
much we explore the environment and how much we exploit.
To achieve this we use an arbitrary epsilon value that helps us
determine whether the agent should explore the environment
or exploit known information.

The agent fetches the current state image from the environ-
ment. Once the agent chooses to explore a random move or
exploit using the known model output, the action is performed.
Based on the action, the next state of the game is fetched
from the environment. We then perform a short training on
the model and store the rewards and the image frames for a
particular action. We then check if the game is active or has
ended. If the game has been terminated after an action, we
reset the game parameters and train the long memory based
on the sequence of states that have been stored for every action
until the game was terminated. If the game was not terminated,
we loop back to fetching the current state of the game and
perform the above operations in sequence.

Sequential inputs of states to the model/network, can cause
the model to forget previous interactions and experiences
as new ones are learned. We make use of a replay buffer
that stores details of the experiences for every interaction or
experience that the model learns. At every step in the long
training, we take a random subset of this buffer and train
the model. This ensures that the model not only learns from
current experiences but also from the past experiences.

G. Adversarial Attack

In this section we focus on certain pitfalls of game bots
trained using RL techniques. We implement [16] that manip-
ulates the input image sent to reinforcement learning system
by adding some gradient based perturbations. However, these
perturbations look like white noise and can be easily ignored
by the human eye. (Fig. 5) shows different game states before
and after perturbation. We notice that it has a huge impact on
the RL agent and results in the agent performing poorly. We
generate these white box attacks in the testing phase after the
model is trained as shown in (Fig. 6).

Fig. 5. The left image is the actual game state where model predicts Jump
Left, Right image is the perturbed state where model predicts No Action

IV. METHODS

We have used 4 popular and widely used Reinforcement
learning models in order to train the agent. The two value

Fig. 6. Test Time Adversarial Attack

based models that we have used are DQN and DRQN. On
the other hand we have also implemented hybrid methods like
A2C and PPO. We have performed experiments on all these
models for different reward functions and different parameters.
We will elaborate more on our experiments in the next section
of the paper.

Q-learning is one the first RL algorithms that has been
widely used. It is an off-policy value-based method that uses a
temporal difference approach to train an action-value function.
This action value function, also called the Q function is used to
identify the value of being at a state and performing a specific
action. The Q represents the Quality of an action (how good
or bad an action is) at a particular state. Q learning uses a
Q table to update the Q values at each iteration. Using a Q
table to update Q values becomes very complex when the
state space of the environment becomes very large. In order
to overcome these complexities, we use DQN, which uses
a Neural Network to approximate Q values for every action
based on the state.

The Q function can be approximated using the Bellman
equation as a linear combination of the rewards (Fig. 7).

Fig. 7. Q-function formula

A. Deep Q-learning

Our DQN architecture (Fig. 8) consists of a series of steps.
We have 3 convolution layers, 3 max-pool layers, and finally
a fully-connected network.

For every time step, the model receives a set of values
(state, action, reward, new state). The state to the network
is an image of size 80x80 as input. This is the image that has
been preprocessed, i.e., resized and converted to gray scale.
This passes through the layers of the network, and outputs
a one dimensional array of Q-values for each action for a
particular state. We then take the largest Q-value of this array
to find the suitable action.

In our case, the frames are processed by three convolution
layers so that we are able to exploit spatial relationships in
image. Each convolution layer is using RELU as an activation
function



We first pass our image through a convolution layer with
filter size of 8x8x32, stride 4 and padding 2. This is then
downsampled using maxpooling and passed through another
convolution layer and the same process is continued for the
next 2 convolution and max pool layers. Finally, we are using a
Fully Connected Layer(FCL) with RELU activation function
and an output layer which is a FCL with linear activation
to give the Q-value estimate for each action. In our case it
produces as 1x3 output with estimates for 3 actions - moving
left, do nothing or move right.

Fig. 8. Deep Q-learning architecture

B. Deep Recurrent Q-learning

The DRQN architecture (Fig. 9) is very similar to the
DQN model, but with an additional Recurrent Neural Net-
work(RNN) being using in the model between the convolution
and fully connected layers. DRQN is a combination of an RNN
and DQN. We have used the Gated Recurrent Unit(GRU) in
our network. The DRQN retains useful information for longer
due to the presence of RNNs [8]. This is expected to help the
agent perform actions that require it to remember states that
might have occurred much earlier during training.

Fig. 9. Deep Recurrent Q-learning architecture

C. Advantage Actor Critic

The A2C architecture (Fig. 10) is very similar to the baseline
DQN model, but we make use of 2 networks for the Actor
and the Critic. The preprocessing steps remain the same for
hybrid approaches. Finally, the input is an 80x80 image which
has been preprocessed and converted to gray scale. This goes
through multiple convolution layers and the flattened result
is sent to the actor and critic networks which are dense
layers. The actor outputs the action probabilities of the policy
(generated from the neural network). This is the policy part of
the model. The other output channel is the value estimation
from the critic which is a scalar output which is the predicted
value of the current state. The actor initially starts off with
some random action and the critic evaluates how good the

action is. This process continues as the agent learns to go
ahead in the game while trying to maximize the reward.

Fig. 10. A2C/PPO architecture

D. Proximal Policy Optimization

The PPO architecture (Fig. 10) is the exact replica of
our A2C architecture. However, PPO is said to improve the
stability of the Actor training by limiting the policy update at
each training step. The major difference in the implementation
is w.r.t to the way we optimize the cost function. In PPO,
we use a clipped surrogate objective function to compute an
update at each step that minimizes the cost function while
ensuring the deviation from the previous policy is relatively
small.

V. EXPERIMENTS, RESULTS AND ANALYSIS

RL based game agents use a lot of hyper-parameters that
are needed to be fine-tuned, to make sure the agent learns
well. These comprise of namely batch size, learning rate,
number of game episodes, discount factor for the Q function
i.e. gamma, memory queue for storing previous games and
reward formulations. We optimized each of them with different
ablation studies based on short number of game episodes.

A. Exploration vs Exploitation

In any Reinforcement learning algorithm, it is important to
have a balance between exploration and exploitation. Explo-
ration helps the model perform random moves and search for
global maxima/minima, whereas exploitation helps the model
learn from the training. A large exploration could lead to
random results whereas a large exploitation could lead to over-
fitting. There are several algorithms that address this. We have
researched three such algorithms:

1) Type 1 - Epsilon Greedy with fixed epsilon: In this
algorithm, we fix the epsilon value (e) at the start of the game
to a probability. At each step, we generate a random number
(r) between 0 and 1. If r > e , we perform exploration, else
we perform exploitation.

2) Type 2 - Epsilon Greedy with exponential decaying
epsilon: In this algorithm, we choose epsilon value (e) as 1 at
the beginning of the game. At eachstep, we decay the epsilon
value. e = e

′
(1 − b)x , where e is the final epsilon value, e

′

is the initial epsilon value, b is the decay factor and x is the
number of steps.



3) Type 3 - Epsilon Greedy with exponential curve decaying
epsilon: In this algorithm, we again choose epsilon value (e)
as 1 at the beginning of the game. e = λ (e)−x, where e is
the final epsilon value, e is the Euler’s number λ is the decay
factor and x is the number of steps.

TABLE II
EXPLORATION VS EXPLOITATION EXPERIMENT RESULTS

Algorithm Type High Score Mean Score
Type 1 8700 1715.3
Type 2 9100 3115.0
Type 3 12200 2837.3

Table II refers to the high score and mean score noted
during these experiments. From these observations we infer
that Type 2 exploration type - Epsilon greedy with exponential
decaying epsilon worked best for our agent and have restricted
our experiments to the type 2 exploration type.

B. Reward Formulations

We used 6 different type of reward functions to see how
agent reacts to different factors of the game.

1) Type 1: The game agent is given a reward of +3 if the
score is increased. If the agent dies or gets stuck it is penalized
with a -2 reward. Whenever agent doesn’t increase the score
i.e. if doodle doesn’t jump up on a new upper platform the
agent is rewarded with 0.

2) Type 2: The game agent is penalized for staying on the
same platform with reward of -1. The rest of the reward remain
same as Type 1.

3) Type 3: The game agent is rewarded +3 if it jumps on
spring and is penalized -4 if it touches monster. The rest of
the rewards remain same as Type 2.

4) Type 4: We add a living reward based on the score
earned by the agent in the game. Adding the game score to
the reward function makes sure game agent tries to live longer.
The rest of the rewards remain same as Type 3.

5) Type 5: The reward remains similar to Type 4, except
that it is not penalized if it stays on the same platform.

6) Type 6: The reward is similar to Type 5, but the penalty
for dying is very high: -20, to force the agent to learn well.

We ran our initial reward based set of experiments for 300
game episodes, gamma of 0.9, learning rate of 1e-3, batch size
of 1k and max memory of 10k. The exploration was random
till first 40 games there on continuously training the Deep
Q-Network model.

TABLE III
REWARD EXPERIMENT RESULTS

Reward Type High Score Mean Score
Type 1 8700 1181.3
Type 2 8800 1491.0
Type 3 8800 1340.0
Type 4 7400 1543.0

An interesting observation in Type 1 reward experiment
was agent getting stuck in the game and not jumping on

neighboring platforms after some iterations. The main point
that giving the agent with a non negative reward by default
encouraged it to stay there in the same position. From Table
III on the basis of mean score, we infer that Type 4 reward
works the best for our game agent. Hereafter, we restrict all
our experiments to the type 4 reward.

TABLE IV
REWARD EXPERIMENT RESULTS WITH EXPLORATION VS EXPLOITATION

Reward Type High Score Mean Score
Type 4 7400 1543.0
Type 5 18100 2110.3
Type 6 7100 395.33

The results above in Table IV are obtained with the best
exploration type - Epsilon greedy with exponential decaying
epsilon.

C. Kickstarting the Doodler

The doodler is only rewarded when it moves up and there is
an increase in the score. For the purpose of training, a kickstart
was given to the doodler at the beginning of the game, where
it would jump a series of platforms and reach an initial score
of 500 before being left to exploit the search space on its own.
The intuition behind this move was to give the agent a slight
push in the right direction with easy rewards at the beginning
of the game, to reduce the exploitation space.

In addition to that, to improve the mean score of the agent
and to prioritize learning of navigation through the platforms,
we modified the game so that the moving blue platforms
would appear after a score of 10,000 was reached, and the
red broken platforms and monsters would appear only after
a score of 25,000 was reached. However, we did not see
any improvement in the mean score after adding making this
modification.

D. Hyper-Parameter Tuning

Tuning hyper-parameters of a model in RL system is similar
to that of any other Deep Learning system. The only difference
is the metric used to judge the best performing parameter.
Similar to the reward experiments, we use mean score and
mean reward to compare different experimental settings.

1) Learning Rate: We use a wide range of learning rates
to run our ablations, we start with 1e-2 and reduce it all the
way to 1e-4. The rest of the parameters are the same as that of
reward experiments. As seen in Table V, we note that learning
rate of 1e-3 gives the best mean reward and mean score.

TABLE V
LEARNING RATE EXPERIMENT RESULTS

Learning Rate Mean Reward High Score Mean Score
1e-2 -0.98 6800 1016.7
1e-3 -0.94 7400 1543.0
1e-4 -0.97 9400 1183.7



2) Batch Size & Game Memory: Batch size for both short
and long training runs is an important factor. It helps the
gradient to be calculated through the a collection of game
frames in memory. We use a couple a batch size and game
memory parameters starting from batch size of 1k and game
memory of 10k as baseline, followed by batch size of 5k &
10k and game memory of 25k & 50k. Table VI shows the
results of these experiments.

TABLE VI
BATCH SIZE & GAME MEMORY EXPERIMENT RESULTS

Batch Size, Memory Mean Reward High Score Mean Score
1k, 10k -0.94 7400 1543.0
5k, 25k 0.01 9700 1326.0
10k, 50k -0.94 8900 1522.3

3) Weighted Expected Reward: Discount factor (gamma) in
Deep Q-Networks enables the game agent to give weightage
to the expected rewards. The more discount factor, the more is
weight given to the expected rewards. We run our experiments
with 3 different values of gamma starting with 0.8 then
increasing it to 0.9 and finally having a value of 0.99. The
results of experiments with different gamma values are shown
in Table VII

TABLE VII
GAMMA EXPERIMENT RESULTS

Gamma Mean Reward High Score Mean Score
0.8 -0.97 10600 1246.3
0.9 -0.94 7400 1543.0
0.99 -0.92 8500 1670.7

E. Final Training Results and Analysis

The table below in Table VIII summarizes the final results
of training for all our models, with each model trained for
2000 game episodes. The DQN and DRQN models were
trained with a learning rate of 1e-3, gamma 0.9, game memory
of 10000 and batch size of 1000. We can see a very good
performance improvement in our DQN and DRQN models
with the addition of the type 2 decaying epsilon parame-
ter(epsilon g decay exp) for the exploration phase. Both the
DQN and DRQN performed the best with reward type 4
in terms of all the 3 metrics of our agent - mean score,
mean reward and high score. We also notice that A2C and
PPO models give good results in terms of both the mean
score and mean reward. The mean reward is the lowest in
comparison to other models for these methods. Overall, we
notice a significant improvement and agent performs well. We
see that the agent has also reached very high scores. The A2C
gave the best results with reward type 5 and PPO performed
best with reward type 4. The actor and critic networks both
used a learning rate of 4e-4 for both A2C and PPO.

F. Fast FGSM Attack

We use two of our best models in terms of the mean score,
the DQN and DRQN to test their robustness against such

TABLE VIII
FINAL RESULTS

Model Reward Type Mean Reward High Score Mean Score
DQN 4 -0.91053 11800 2854.2

DRQN 4 -0.89775 21100 2079.7
A2C 5 0.0000 11600 2742.1
PPO 4 -0.00034340 9400 1841.3

attacks. We implement a variation of the FGSM attack which
has an epsilon parameter that controls the maximum variation
in a pixel. The formulation of FGSM can be seen below. We
used an epsilon value of 0.3 to introduce perturbations in
input using Fast FGSM method. The Table IX summarizes
the result of the FGSM attack on our best DQN and DRQN
models. The models were tested for 300 game episodes.
We notice that with the generation of attacks our model
performance has reduced significantly in terms of the mean
score. We notice that DQN has a greater impact on the attack
compared to DRQN A reason for robustness of DRQN is its
use of recurrent layers to remember temporal information.

FGSM Attack Equation:

advx = x+ ε ∗ sign(∇xJ(θ, x, y))

TABLE IX
FGSM ATTACK RESULTS

Model Benign
Mean Score

Adversarial
Mean Score

Performance
Drop %

DQN 2854.2 1464.6 48.6%
DRQN 2079.2 1883.0 9.4%

VI. LIMITATIONS, CONCLUSION AND FUTURE WORK

In our experiments we saw, DQN and DRQN models are
prone to overfitting especially when the RL environment
is Non-Episodic in nature. In addition, using the imagenet
pretrained models did not improve the performance of the
off-policy methods. This points to the fact that higher number
of parameters and transfer-learning may not always improve
metrics especially in an RL system. Finally, Reinforcement
Learning models are prone to adversarial attacks just like any
deep learning model, even when the environment is made
simpler.

For conclusion, we note that a continuous reward that
increases in a logarithmic way is much more beneficial for
RL based systems. To stop overfitting of DQN & DRQN
models, experience replay with decaying epsilon is a good
regularization technique. With respect to the policy based
models, A2C and PPO, behave more human like as they are
cautious in taking steps, this is a result of using critic network
working in tandem to judge the output from action model.

In future, we would like to explore other off-policy methods
like Action-Specific Deep Recurrent Q Network (ADRQN).



We also look forward to see the effects of adversarial attacks
on A2C and PPO models. In parallel, to make models robust
we would use adversarial training with the feedback of per-
turbed images to train Reinforcement Learning System.
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